Rotational cooling of molecules using lamps
نویسندگان
چکیده
We investigate theoretically the application of tailored incoherent far-infrared fields in combination with laser excitation of a single rovibrational transition for rotational cooling of translationally cold polar diatomic molecules. The cooling schemes are effective on a timescale shorter than typical unperturbed trapping times in ion traps and comparable to obtainable confinement times of neutral molecules.
منابع مشابه
HIGH RESOLUTION LASER SPECTROSCOPY IN COLD SUPERSONIC MOLECULAR BEAMS COOLING, REDUCTION OF DOPPLER WIDTH AND APPLICATION
The cooling of molecules during the adiabatic expansion of supersonic seeded molecular beams is reviewed and illustrated by the example of NO -molecules. The reduction of the Doppler width by collimation of the beam and the cooling to low rotational temperatures brings a significant simplification of the complex NO -absorption spectrum and allows its assignment. The measured rotational tem...
متن کاملCooling Enhancement of a Photovoltaic Panel Through Ferrofluid Stimulation Using a Magnetic-Wind Turbine
Wind energy is used to rotate a magnetic turbine in order to remove heat from the surface of a photovoltaic (PV) panel. A three-bladed turbine, which rotates with wind energy, has rotational motion underneath the studied PV panel in order to move Magnetic Nano-Particles (MNPs). In addition, effects of the magnetic field strength (B=450-830 mT), rotational velocity of the magnetic turbine (ω), a...
متن کاملCavity cooling of internal molecular motion.
We predict that it is possible to cool rotational, vibrational, and translational degrees of freedom of molecules by coupling a molecular dipole transition to an optical cavity. The dynamics is numerically simulated for a realistic set of experimental parameters using OH molecules. The results show that the translational motion is cooled to a few muK and the internal state is prepared in one of...
متن کاملLaser Desorption Jet-Cooling of Organic Molecules Cooling Characteristics and Detection Sensitivity
Laser desorption followed by jet-cooling allows wavelength-selective as well as massselective detection of molecules desorbed from a surface without fragmentation. The cooling characteristics and detection sensitivity of laser desorption jet-cooling of organic molecules are investigated. From the rotational contour of the electronic origin of the $1 ~-So transition of laserdesorbed anthracene, ...
متن کاملOptical pulse-shaping for internal cooling of molecules.
We consider the use of pulse-shaped broadband femtosecond lasers to optically cool rotational and vibrational degrees of freedom of molecules. Since this approach relies on cooling rotational and vibrational quanta by exciting an electronic transition, it is most easily applicable to molecules with similar ground and excited potential energy surfaces, such that the vibrational state is usually ...
متن کامل